2023爱分析·数据分析平台市场厂商评估报告:衡石科技

2023-08-23 05:11:06 来源:面包芯语

图1:头部企业中计划建设或升级指标分析与管理能力的比例

图2:对话式交互促进数据分析平民化


(资料图片)

图3: 基于湖仓一体引擎的数据平台架构

数据分析平台是一套由ETL引擎、数据仓库、指标计算引擎、数据分析工具和报表工具等功能模块组成的软件系统,能够在打通和整合企业内部各类数据源基础上,通过多样化的数据查询和分析,以指标、报表、图表形等式输出数据分析结果。

企业数据分析师、业务分析师、管理人员,以及大数据部门负责人、IT部门负责人等

支持业务人员、管理人员实现自助数据分析。数据分析结果的最终受众是企业业务人员和管理人员,但大多数数据分析平台的主要使用者是企业数据团队,在业务逻辑向数据逻辑转换过程中,由于沟通成本等原因,需求响应的即时性和准确性都难以保证。因此,企业业务人员和管理人员需要一个低门槛、易操作的数据分析查询平台,不仅能够直接满足其部分即时性、灵活的数据分析需求,同时还能够方便其参与数据分析过程,与数据团队协作共建。

提升数据分析结果响应速度。企业在多年的数据分析实践中,经过多次加工处理形成了极度膨胀的ETL任务和中间表,在运行中会消耗大量IT资源,严重拖慢了分析结果产出的速度。随着外部市场的变化加快和企业运营的敏捷性提高,企业需要小时级、分钟级的分析结果,无法接受以天为单位的产出。

支持业务侧大量场景化、定制化需求。随着对数据分析产品的使用不断加深,企业用户不再满足于仅仅用其生产固定报表,而是希望能在更多深度结合垂直业务的分析场景下使用数据分析平台满足相应需求。然而,大部分数据分析平台是基于预设的分析场景进行搭建,新需求的实现需要数据工程师进行定制化开发,等待周期较长,极为不便。

能提供低门槛、高易用的数据交互方式,满足业务人员使用需求。为应对非数据分析专业人员的查询、分析需求,厂商首先需要提供便捷的数据查询入口,支持通过拖拉拽、搜索、自然语言等简易交互方式实现数据查询,尤其在当前大模型能力逐渐成熟的背景下,提供基于自然语言的数据查询能力将成为厂商的必备能力;其次,厂商需要优化在报表展示界面,让用户能够通过滑动、托拉拽等操作自主进行数据和指标的关联分析、对比分析等,并支持多种图形化呈现方式选择。

通过构建高性能数据分析引擎或高效数据流通链路等方式,提升数据分析速度。其一,厂商可以通过建立更完善和通畅的数据接入、处理、分析全链路,加快数据流转,并且在底层可采用新一代的湖仓一体引擎,以提高分析性能和弹性扩展能力;其二,厂商还可以通过构建独立的模型指标层,实现分析和数据的解耦,从而实现高效的数据分析,并减少极度膨胀的ETL任务和中间表;其三,厂商可以基于AI算法,在数据准备和数据探寻等数据分析环节中实现流程的自动化,提升效率。

能提供丰富的数据分析功能,并支持模型、指标的灵活调整。厂商预设数据分析场景的定制化能力,无法满足企业衍生出的多样化、垂直场景化的分析需求。因此,厂商首先需要在产品中加入以机器学习、深度学习等技术为基础的分析引擎,支持对大数据实现归因分析、预测分析等多种智能化分析方式;其次,厂商产品需要支持数据模型以托拉拽等方式灵活调整,帮助数据分析人员实现快速按需定制。

入选标准说明:

衡石科技定义新一代AI-Powered的分析智能平台,专注赋能全行业的企业客户和SaaS/ISV厂商敏捷构建分析应用。旗下核心产品HENGSHI SENSE,让合作伙伴在自己的业务场景中轻松上线AI Copilot、BI分析、指标中台、运营看板等功能,驱动业务的智能化转型。衡石科技的核心团队来自VMware、秒针、阿里、百度,底层架构能力卓越。

具备成熟的企业级BI PaaS能力,能够支持SaaS、ISV等厂商快速构建数据分析应用,极大降低厂商自行构建数据分析能力的成本。

在功能方面,HENGSHI SENSE具备包括数据准备、数据管理、数据建模、数据分析、数据看板、指标管理等在内的功能全面的数据管理与分析能力,并支持通过零代码的方式,构建一站式的数据分析工作流;

在开放性方面,HENGSHI SENSE架构具备高度的开放性和扩展性,能够将数据准备、聚合、建模、分析、可视化等能力拆分成标准的功能模块,并为所有功能模块提供API接口,用户可以灵活调用所需功能的API,同时结合样式、主题的定制化,满足用户个性化的需求。

在多租户管理方面,HENGSHI SENSE能够基于不同用户复杂的组织架构,按账户进行行权限、列权限最小粒度的权限控制,并支持与业务系统的权限管理打通,以保障数据安全。

具备完善的指标管理与分析能力,让用户能够较低的门槛灵活应对业务报表和分析需求,并减少数据部门进行数据加工处理的成本和压力。区别于传统BI厂商的产品,HENGSHI SENSE在架构层面采用逻辑语义层(HQL)将数据与分析解耦,并将数据转换计算过程(Transform)后置,即将ETL转变为ELT。用户因此可以以指标为中心,通过HQL语言定义相关业务指标以进行数据分析,从而实现消除数据口径不一致,减少重复建模和中间表以提升建模效率,以及降低分析门槛,让业务人员具备自助分析的能力。同时,HENGSHI SENSE不断丰富完善了指标定义和指标管理能力,使用户能够在平台上建立完备的指标管理体系,实现从传统BI到自助式敏捷BI再到业务自主式指标型BI的转变。

以元气森林为例,元气森林利用HENGSHI SENSE的业务指标层对接其底层的各类明细数据,业务部门的各类数据查询、数据应用、业务报表都通过调用指标层的能力实现,从而高效满足业务部门的各类用数需求,支撑业务发展。

能够与业内先进的湖仓一体引擎无缝集成,提供高性能和低成本的数据分析体验。HENGSHI SENSE独特的ELT分析管道架构,具备强大的指标管理与分析能力,也对底层引擎的架构和性能等方面也提出了更高要求。因此衡石科技与云器科技合作,利用云器科技的湖仓一体数据平台,形成了云端一体化的数据分析解决方案,从架构上极大提升了分析的灵活性,真正让BI可以在业务侧落地。具体而言,云器科技的湖仓一体数据平台具备简化的系统架构,能够统一存储和处理企业的各类数据,同时,云器科技的湖仓一体数据平台具备高性能,以及根据分析需求对存算资源进行弹性扩展的能力,因此可以在企业进行大规模的指标查询和应用中,提升响应速度,并降低使用成本。

提供基于大模型的AI增强分析能力,让业务用户能够以自然语言的方式进行数据查询与分析,大幅降低数据分析的门槛。在功能设计上,HENGSHI SENSE利用大模型强大的自然语言理解,以及SQL生成能力,并基于平台的指标体系,让用户可以对系统进行提问,实现各类业务报表和分析功能;在使用形式上,平台采用AI Copilot的形式,给用户提供常用的Dashboard,并提供基于AI提炼的关键数据和信息,用户可以在此基础上针对相关问题进行进一步追问。此外,平台提供了通用的大模型调用框架,用户可以根据自身情况选择合适的大模型。

典型客户:

关键词:

上一篇: 2022年我国经济发展新动能指数比上年增长28.4%
下一篇: 最后一页